
AD-AI09 661 STANFORD UNIV CA DEPT OF STATISTICS F/G 12/1

OPTIMAL SEQUENTIAL SELECTION OF A MONOTONE SEQUENCE FROM A RANO--ETC(U)
NOV 81 S M SAMUELS, J M STEELE NOOO0-A76-C-475

UNCLASSIFIED TR-310 NL

I flflfl..flfllflf
I EEEEmIIII



HH~ __________IIIII1.

S LM! R





OPTIMAL SEQUENTIAL SELECTION OF A MONOTONE

SEQUENCE FROM A RANDOM SAMPLE

By

Stephen M. Samuels and J. Michael Steele

TECHNICAL REPORT NO. 310

NOVEMBER 10, 1981 4TTS Cp.&T 'Ti
SDTIC AH '

I J r n : I .1 .0 C... .

Prepared Under Contract B -.....

N00014-76-C-0475 (NR-042-267) .Di st .1
Av I,, 1, t , -t ,

For the Office of Naval Research I
IDi--t S c :

Herbert Solomon, Project Director I 4

Reproduction in Whole or in Part is Permitted
for any Purpose of the United States Government

DEPARTMENT OF STATISTICS

STANFORD UNIVERSITY

STANFORD, CALIFORNIA



Optimal Sequential Selection of a Monotone
Sequence from a Random Sample

By

Stephen M. Samuels and J. Michael Steele

1. Introduction.

A central theme in the theory of optimal stopping is that many

stochastic tasks can be performed almost as well by someone unable to

fbresee the future as by a prophet. In one classic example, the

"secretary problem", the task is to stop at the largest of n sequentially

observed independent identically distributed observations XX 2,...,X n '

Without clairvoyance one attains XT where T is some stopping time,

but a prophet is always able to attain max Xi .
l<i<n

That the prophet's advantage is rather modest follows from the well

known fact that no matter how large n is there is a stopping time Tn

for which

(1.1) P(XT = max Xi) > e-1

n l<i<n

(see, e.g. Gilbert and Msteller (1966)).

The stochastic task we consider here is more complex than the

secretary problem and the central theme is illustrated in a different

way from (1.1). To set the problem, let (Xi: 1 < i < C, denote

independent random variables with continuous distribution F. The

basic object of interest is
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n= -maxk: X,1 >Xi2>'">Xikwith <i1< i2 < ...< ik  n)

the length of the longest monotone decreasing subsequence of the sample

(XX 2 ,...,Xn ). (We could equally well have considered increasing sub-

sequences but the notation will be simpler this way.) The variable Ln

has been studied extensively and it is now known that

(1.2) nEL ~ 2v .

The first result, EL - c n, was obtained by Hammersley (1972) via
n

an ingenious use of the planar Foisson process. Baer and Brock (1968) had

conjectured earlier on the basis of computer simulations that c = 2. By

a delicate variational argument Logan and Shepp (1977) proved that c is

at least 2 and by a similar method Vertik and Kerov (1977) established

that c equals 2.

How well can one sequentially choose a monotone decreasing subsequence

using only stopping timesl Formally, we call a sequence of stopping times T, T,..

a ZZLicy if (1) they are adapted to (Xi: 1 < i < 0), (2) 1 < 'l < x2 <

and (3) Xl > X2 > • The class of all policies is denoted by

and our main problem is to determine

un = sup E(maxfk: k < n).
lEA

The quantity un  is the largest expected length of a monotone decreasing
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subsequence which can be achieved by sequential selection. Although un

would a Lriori depend on F, one can easily check that it is the same

for all continuous F. Moreover the optimal policy for a given F can

be obtained via the probability integral transform from the policy for

the uniform distribution on [0,1].

Our main result is the following

THEOREM.

(1.3) Un -V •

The intuitive content of this result is another illustration of the

central theme; the prophet asymptotically outperforms the intelligent

(but non-clairvoyant) individual by only a factor of VT. One

should also note that the naive individual who too eagerly

reports each successive record low achieves an expected length of only

n

E 1/k - log n and thus does much worse than the prophet or intelligent
k=l

individual.

Our proof that u ~n - %/2 begins with a simple algorithm for computing

un based on an integral equation obtained by dynamic programming. Standing

alone, the integral equation seems to be ineffective, so in Section 3 we

prove by a aubadditivity argument that u n/ has a limit. A sequence of

efficient, but suboptimal, policies are then given in Section 4 which show

lim un/- >12. The crux of the proof is in Section 5, where the integral

equation is finally used to show lim un/v/ < vJ after first establishing

an essential regularity property of the solution by a probabilistic argument.

3
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The proof outlined above yields several results en route. In

particular, we obtain results on optimal selection when the sample

size is random. These results as well as comments on a related

problem are collected in Section 6.

In the final section we are fortunate to be able to include a result

due to Burgess Davis on the sequential selection of a decreasing subsequence

from a random permutation. This result teams up with the main theorem of

this paper to settle a second conjecture given in the computational paper

of Baer and Brock (1968). We would like to thank Professor Davis for his

kind suggestion that his result be included in the present paper.

2. An Algorithm for Computing the Optimal Expected Length.

First of all, as we remarked in the introduction, we may assume

without loss of generality that the common distribution of the observa-

tions Xl,X2,... is uniform on (0,1).

Let us define, for each t E (0,1],

(2.1) ilt  = (,--( 1,2, ... ) E : x.Ti < t , 1i:12,...):

the class of policies hich only select observations smaller than t.

We also let

(2.2) U n (t) sup E(max(k: k < n))

t

Clearly

(2.3) un - un(1)

4



and

(2.4) U (t) P(X 1 < ) =

We also record the trivial fact: u0 (t) a 0.

Now fix t and consider n+l available observations. Because of

the stationarity of the Xils, the maximal conditional expected sub-

sequence length, given X, will be just un(t) if X is not selected

and l+un(X.) if X is selected (in which case necessarily XI < t).

Since the optimal policy must do whichever maximizes the conditional

expectation, we have the algorithm:

(2.5) Un+l (t) = Un (t)P(XI _ t)+E maxtun (t),l+un(X1)) I{Xl < t)

= (l-t)un(t) max(un(t),l+un(S)}ds•

It follows easily that for each n and t, the policy which achieves

un(t) is

(2.6) T= rini: X < t and 1+u ni(Xi) > un-i(t))

> n(arbitrary) if no such i < n

k+I = minti > Tk: X, <X and l+uni(Xi )>u

> n(arbitrary) if no such i < n or if rk > n.

Since (2.4) and (2.5) imply that each un(.) is strictly increasing on

(0,i), we can implicitly define the functions t (n) by the following relations:
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(2.7) Un (t )) u n(t)-l if un (t) < 1

tn(t) 0 if un(t) < 1

Equation (2.6) now simplifies to the following:

(2.8a) T minfi: t*-i(t) < X, < t)

(2.8b) Tk 1 =min~i > Tk: tni(X k ) <X < X~k
Tk n k 1  Tk

One ould naturally like to show un - / directly from (2.5),

but this does not seem possible. The integral equation (2.5) becomes

effective only after substantial quantitative information about un(t)

is obtained.

Here we should remark that.

(2.9) Un(t) =  , k l  n. ()t J(1t) n - j

k=1 j=k

for all t small enough so that the right side of (2.9) is less than or

equal to one. This can be shown either directly from the integral equation

or by noting that when u n(t) < 1 the optimal policy is to select all

successive minima among those Xi 's, i = 1,2,...,n, wich are smaller

than t. The right side of (2.9) is the expected number of such minima.

3. Existence of the Limit.

To show that un/ /i has a limit, we shall first prove that a limit

exists for an analagous planar Poisson process prcblem and then show that

the two problems are asymptotically similar. The proof is a version of

Hiursley's subadditivity idea made somewhat simpler because we deal

only with expectations rather than with random variables.
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3a. The Planar Poisson Process Problem.

Let Z1 ,Z 2 ,..., be lID, each exponentially distributed with mean

one, and independent of the Xi's which are lID uniform on (0,1).

Let J be the class of policies T = (TIT2,...) with

(a) each Ti adapted to ( (Zi,Xi): 1 < i < cxj

(b) I< T, < T2 < - and X >

and let

Tk

w(k) = sup TeZj E(max k: Z. < X)
1

In other words, we observe a Poisson process with arrival rate one,

on an interval of length X. At each arrival time we are allowed to

observe a random variable uniform on (0,1) and independent of its

predecessors, and the object is to select a decreasing subsequence of

maximal expected length.

What makes this problem so appealing is the well-known fact that,

if we choose p and t, each in (0,1), then the following two processes

are also Poisson:

(a) Those arrival times in (O,p%) for which the corresponding

C, s are > t,

(b) Those arrival times in (pX, .) for which the corresponding

Xi's are < t.
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Those processes have expected numbers of arrivals p(l-t)X and (1-p)tA

respectively. It follows, by considering the subclass bf JZ consisting

of those -i's with

x >t if I z < P

< t if E Zi >ph,
j=1

that

(3.1) wrk) > w(P(l-t)) ) + w((l-P)t%).

If we now define

P(x) w(x 2 )

and choose X - (r+s) 2 , p = l-t = r/(r+s), (3.1) becomes

(3.2) p(r+s) > p (r) + p (s)

Wr the elementary lemma on subadditive sequences (Fekete (1923), or

Khinchin (1957)), this implies the existence of

(5.3) Y = lin P(t)/t = lrn sup P(t)It > 1

The finiteness of y follows from the inequality

w~)< k  O Ak

k= (X t ELk - M  Nk. V' < M/ V%
kk--O

L - ------ !



the second inequality holds for some constant M by (1.2). The

last inequality is just an application of the familiar inequality

EJXI < E2

Thus we have shown that there is a finite y > 0 such that

(3.4) = lir w(t 2 )/t

t oo

= lim w (t)AVT
t 00c

3b. Asymptotic Similarity of the Two Processes.

We will now use some elementary estimates to show that. un ~ w(n).

With the usual notation

k

P(k;%) kZ x e /j:
j=o

and

;(k;%)= l-P(k-l;%)

we will prove the inequalities:

(3.5) u[ :-), ( (1-00X;%.) <wM.

and

(3.6) wMx < U[(l€x P([(+)]I + x;([ (l+e)x;%).

The first inequality holds since the optimal policy for n =[(1-c)]

observations used on the Poisson process (paying no heed to the Zi's )

9

S -boo



would yield an expected length of at least u, (l-,)X]

whenever there are at least [(l-)] arrivals.

For the second inequality let N be the number of arrivals and

let L be the subsequence length obtained when the optimal policy

in J is used. We then have

w() -- E(LIN < [(l+E)X] )P([(l+E)%];%)

+ E•E(LIN)I(N>((1+E)kJ))

We note E(LIN < [(l+E)X]) < u[ (l+0)X] and trivially E(LIN) < N.

Inequality (3.6) then follows since

EI(N> ( l+E)X]) =?( Off ;X

From the fact (3.4) that w(%) -y,.- and elementary bounds on the

Poisson distribution one now easily deduces from (3.5) and (3.6) that

Un - Y-/;: •

We remark that it is not hard to extend this result to show that for each

tE(O,1] one has un(t)/W t
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4. A Lower Bound for the Limit.

For any constant a > 0, and for each n, we consider the policy

r(n) = T(n;a), where

T 1 (n) = minfj: Xj > 1-a/V31

k+l (n) = minJ> Tk(n): Xj [XTk(n)-a/%/;" Xr k(n)))

We shall show that for these policies

(.)lim inf E max~k: T k(n) <_ n) >_ V- min(a,2/a).

n-+ oo

The right side of (4.1) is maximized for a = V, which shows that

lir inf n . u /n > V9. (of course when we complete the proof ofno n

the Theorem, (4.1) with a =N/ will imply that the policies r(n; V)

are asymptotically optimal.)

hat makes the policies T(n) easy to evaluate is the fact that if

X >/ Vn, then k+l(n)-T (n) and X k(n)-Xk+l(n ) are conditionally

independent and independent of (Tl(n),..., k(n); Xl(n),-.X k(n),

with geometric (p = a/I ) and uniform on (o,a//n) distributions

respectively. Hence we now let (Yk: k = 1,2,...) and

(Zk:k = 1,2,...) be independent sequences of lID random variables with

these geometric and uniform distributions respectively. Also set Sk = YI+ """+Yk

and Si =Z +..+Z. , and define

Mn = max(k: Sk< n and S< .al/-)

[1



We first observe

(4.2) EM < E max(k: Tk(n) < n.

Now, for any E > O, Chebyshev's inequality gives

(1 +O(n-1/2) if k < (1-E)anl/2

P(Sk < n) = (ni/2) if k > (1+E)Cn I /2

and

l1+ (n- 1/2 if k < (1-E) (2/a)n1/2

So(n - 1 2) if k > (1+E) (2/a)/2

The O(n- /2) terms are uniformly small in the indicated range, so,

by the independence of the two sequences,

n - /2
E - P(Sk < n)P(S' < i-,/) ~n mn(a,2/a)
k=l

By (4.2), this shows that (4.i) holds, completing the proof.

5. An Upper Bound for the Limit.

NoW that we know that lia un/A3 exists and is at least V, to

complete the proof of the Theorem it will suffice to show that

(5.1) lim inf un/ < V .

12
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Our proof of (5.1) hinges on showing that

(5.2) un(t)/Vt tin t for each n.

The derirative of un(t)/VT is

t-1/2(Un(t )  - 1(2t)'un(t))

so, to prove (5.2), we must show that for each tE(O,1)

(5.3) un(t+-')-u(t) > (1)(b/t)u(t)+o(b) as 6 4 0.

This inequality will be proved by selecting a suboptimal member of

2t+6 (as defined in (2.1)) and showing that this policy improves on the

optimal policy in ?t by an amount equal to the right side of (5.3).

What we actually do is a bit more complicated than this and involves

showing that un(t) is also the maximal expected subsequence length in

a problem where the number of available observations is random with a

binomial distribution.

5a. Optimal Selection with Binomially many Observations.

Since the policy in st which achieves u (t), as given byt n

(2.8), igres the actual values of all Xi's which are greater than

t, and since the other X i's are, conditionally, lID uniform on (O,t),

we could just as well replace the Xi's by a sequence of observable coin

tosses with probability t of heads, letting each toss which gives heads

be accompanied by the next in a sequence of IID random variables uniform

on (o,t).

13



To exploit this observation let Y1 ,Y2,... and X1 ,X2 ,... be

independent sequence of IID random variables, the Y's Bernoulli (t),

and the X's uniform on (0,1). Let Ut be the class of policies

adapted to the (YiX i 's which select a monotone decreasing subse-

quence by selecting only Y,'s for Which Yi = 1 and which totally

ignore all X's for which Yi = 0. Then for the un(t) defined by

(2.2) we have the representation

sup T E(max(k: -k <- n) = un(t)

Since we have made the X is uniform on (0,1) rather than

on (O,t) -- this is to avoid confusion in what follows -- the policy

T (rl, 2 ,...) which achieves un(t) becomes

= minti:y =1 and t _i(t) < tXi< t)

Tk+l =mini > k:Yi=l and t*.i(tx k )<tX<tXk.

Now suppose we introduce a second coin toss at each stage -- letting

Yj,Y2,... be lID Bernoulli (p') and independent of the Yi s and the

Xi's -- and we allow policies adapted to the (Yi) as well, but maintain

the requirement that all Xi's for which Y = 0 must be ignored. Then

clearly what we have introduced is external randomization; those policies

which depend in some way on the {Yj} are simply randomized policies,

and, of course, none of these can improve on the best non-randomized

policies. In particular, any policy which tgnores all Xi's for uhich

14



either Yi = 0 or Yj 0 is really a policy in hence the

expected length of the subsequence of ,...,X n which it selects is

no greater than un(tt'). Just such a policy will be needed in proving

(5.3).

5b. Monotonicity of un(t)/V:E

We new fix n and let the (Y i be Bernoulli (t+6) and-the

[Yl) be Bernoulli (t/(t+b)). First note that P(Yi =Yj=l) = t. We

considev two randomized policies T and T' in 4t+b" The first is

to be equivalent to the optimal policy (for given n) in U~t while

the second is to be a slight modification of the first. Specifically,

we let T = (T l, 2 ,...) with

T = minfi:Yi=Yi=l and t* (t) < tXi
n-I - i

Tk 7:=min(i > T:Yi=Yi=l and t*1 (t. )txi < tX1 r

We want V to agree with T up to the first i < n, if any, at which

Yi = 1, Y' =0, and at which Xi would have been selected by T if

Yi had been 1. We want . to select this Xi, but thereafter to

continue to behave like T. We thus define

I = minfi: Y =i, Y' = O, t*i (tXi) <tXi < tX
Y, i n i a',ai

= oo if no such i < n,

where

15



cr = max(rk: k < i)

-o (and xo -) if , >i.

We then let r' :( L'>x...') 'bere

Ti -t if k < I

kt k k l• = I if Tk < I < k+l

kl mni > Ti: Yi=Yi=l and t*, (tX 5 i <tXt ) if '> I.
k+l Ti l4 j

Now, for convenience, we let L and L' be the lengths of the

subsequences of J,...,Xn  selected by r and r' respectively.

Then L =L' on (I > n),

EL = Un(t) ,

and

EL' < un(t+r)

so

(5.4) Un(t-B) -Un(t) > E(L'-LII<n) P(Z<n).

Furthermore, from (2.2) and the definitions of T and TI,

(5-5) E(L'-LII=i, X~ = x) =

01

l+z[Un-i (X i )l -=, X i ) -6Un-i (tx)

16



(Note: (5-5) is valid even when i=n, since we have set uo(t) = 0.)

From (5.4) and (5.5) we see that to establish (5.3) it suffices

to prove

(5.6) F(I < n) < (8/t)un(t) +o(8 ) as 8$o

and, for each i < n,

(5'7) E[Un-i (t i)l XI, X a', > u n i (tx)-i/2

To prove (5-6) we first remark that, since t/(t+b) *i as

B 40, we have

n
(5.8) P(I < n) : P(Y I- , Yj-°, A1 ) + o(b)

I1

where Ai denotes the event (ti(tX) < tXi < tX 1. Ai is
ni a*,i

independent of [Yi=l, YT=O) so

P(Y i 1, Yi =o, j) = P(yi~l, Yj-) P(Aj)

= (5/0) P(Yj:Yj:1, Aj)

= (5/t) P(XI is selected by T)

Patting this back into (5.8) we have
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n

P(I < n) (B/t) P(Xi is selected by r) + 0(B)
i~:1

= (/t) unCt) + o(b)

which is (5.6).

To prove (5.7), we first remark that the conditional distribution

of tXi given X =i and X,= x is uniform on (t* (tx), tx) - Also we

note that

(5.9) U (t* )) > n-,(tX) - I

with equality holding unless uni(tx)<l. Hence if un(.) were linear on
the interval ni(tx),tx), (5.7) would hold and would in fact be an equality

if uni (tx)>1. So the most natural way to establish (5.7) is to prove the

following lemma:

Lemma 5.1: For each n, un(-) is concave.

Proof. We proceed by induction and first note the lemma is true for

n = 1 because ul (t) = t.

Using (2.7), we re-write (2.5) as

U n+l(t) = t+(l-t~un(t ) + tn(t)(Un(t)-l)

+ ft n (a)do"

Formally we have

(t) =-un(t) + (l-t (t) + t n ' (t)(n(t)-l)

t)Un(t) + Un(t) -tn'(t)Un(tn

18



Now Un(t*(t)) (un(t)-l)+ and tn'(t)= 0 if u (t) < 1. Hence

whether or not Un(t) > 1 we have

un+l W + (i-(t-tn(t)))un(t)

and

If uu ', is concave (i.e., u" < 0), then (t-tn (t)) is increasing.
nn

Since, t-tn(t) <I and Un(-) >0, we conclude that u" (t) <0, i.e.,

U ( ) is concave.

The validity of the foregoing differentiations are also easily

,established by induction. To begin note ul(t) = t and tl(t) - 0.

Next the differentiability of un and un' implies t*(-) isn n

differentiable on ft: u n(t)>l); in fact, we have

tn ' (t) = Un(t)/un(tn(t)). By means of (2.5) one even more easily

sees the required differentiability of u (.).

This completes the proof of the lemma, from which we obtain

( .7).

5c. Completion of the Proof.

At last we are ready to prove (5.1). We define

(5.10) en = Un// = un(I) Ir

and note that it only remains to shoo lir inf cn <v/ By (5.2),

19
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(5.11) cn(nt)1/2 > u(t) te(o,1)
n- n

Abbreviate

tn t n(i)

and define a* analagously byn

c (no*)1/2 = n-1

n n

so

(5.12) * 1- 2cn-1/2 + en-2n-1
nnn

Now (5.10) and (5.11) imply that

(5.-3) S < tn- n

so, re-writing (2.5), with t 1, as

un+1 = un + f (Un(t)-(un-1))dt
n

we conclude from (5.10), (5..1), an (5.13) that

(5.14) un+1 < cnnJ/2 + . 1 (C (nt)1/2 - (c•nh/2_1))dt

n

This is perhaps the central inequality in the proof, and it is

made possible by (5.2). The remainder of the proof demands only

20
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straigbtforward analytical manipulption of the right side

of (5.1).

Evaluating the right side of (5.14) we get

(5.15) c hI  + (2/3)cnl/2 (1-83/2 -( -s*) (cnn1/2 1)(.) n+l --< cn n nn n

Substituting (5.12) and the Taylor series expansion

*3/2 (so(()8),2
I-s +o(Cl-s* 3 )- n  n-n-

into the right side of (5.15) gives

12+ c-1 -1/2 -1
(5.i6) Un+1 -< Cn + n +o(n - )

= (n+l)12 (cnnl/2 (n+l) -/2 + C "1n l/2 (n+l) -1240 (n"5/2
n

Now direct computation shows that

n1/2 (n+l)-1/2 = 1- (1/2 -b n )/nI/2 (n+l)1/2

where 5n > 0 and 6n # 0 as n - oo. Hence (5.16) is

Un+1 < 1 (n+l)12(cn+n-1/2 (n+l)"1/2 (Cn1- 1)c +o(1)).

From (5.10), with n+l instead of n, we have

(5.17) Cn+1 < cn+n1/2(n+l)l/2(cl (;)cn 1 +o(1] "

21



This is exactly what we need to show that lim inf cn <V2 and

thereby complete the proof.

We use the fact that c -c/2 is decreaaing in c and zero for

c = C. Choose e > 0 and ne large enough so that for all n >

the o(1) in (5.17) satisfies

o(l) < (!)I (J-+ e)-l - (1)(/2+ e)l m- b

Then for all n>n

c n > C2+ c @ n+1 < e n- 5nC n (n+l)1/

I

But

Sn 1/ 2 (n+I ) -1 2

so Cno >y + for some n>n, implies cno4M < +  for some m.

Since e > 0 is arbitrary this shows that lim inf Cn < V2 as

required to complete the proof.

We should remark that exactly the same argument can be used to

prove that

uit)/(nt )1/2 -2

for every t in (0,1).

22



6. Random Sample Size and an Open Problem.

As an easy consequence of u n '-- one can obtain several results

on subsequence selection when the underlying sample size N is random.

In particular we now define uN by

(6.1) uN = sul E(max(k: _ N),

where 4 consists of those strategies adapted to (Xi 1 but not

adapted to N. 14hen N is Poisson or binomial (with fixed p) one

can easily show that as EN . o we have

(6.2) uN ~ /2 .

In fact one can check that the same result holds whenever EN -. 0 and

Var N = O(EN). (To compare these results with the asymptotic relations

of Sections 3a and 5a one needs to note that the class of policies applied

there were quite different from those used in (6.1) since they were also

adapted to the relevant Poisson or Binomial processes.)

We now consider the next most complex case where N has the

geometrical distribution (P(N=k) = p(1-p) k - l , k= 1,2,...). The condition

Var N = o(EN) does not hold, so as before the natural analysis begins

with dynamic programming.

Analogously to (2.2) we define

UN(t) = sup E(max(k: rk< N))
r Et
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One can easily check in this case that

U.(p)(t) = UN(p, )(l)

where

P, = P/tp+t(1-p)l

If we define f(p) = uN(p)(l) we are led to a single integral equation:

f(p) = (l-p) f max(f(p), l+f(l/fp+t(l-p)))Idt

As we similarly noted at the end of Section 2 we can solve the equation

for sufficiently extreme values. In this case we know

f(p)=log(p 1l) if p>e-l .

This observation just says that if f(p) < 1 the optimal policy is to

select all record values exactly as one does in the fixed sample size

problem when un (t) < 1.

One 'would like to determine the asymptotic behavior of f(p) as

p * 0. We conjecture, but have not been able to prove, that as p -. 0

f(p) ~ cp -/2

for a constant

c<
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7. A Result of Burgess Davis on Selections from Permutations.

If one considers a random permutation of the set {1,2,...,n),

then the distribution of the length of the longest decreasing subsequence

is the same as that in a random sample of size n from a uniform distri-

bution. In contrast, the length of the optimal sequentially selected

decreasing subsequence is stochastically larger in the first case.

We let k. denote the expected length of the longest decreasingn

subsequence which can be chosen sequentially from a random permutation.

The main result of this paper immediately implies that

(7.1) lim inf . // >1 •
n -

Part of the interest of this observation stems from the fact that

the study of the X. 's was already a primary objective in Baer andn

Brock (1968), where "natural" is used as a synonym for "sequential." On

the basis of substantial computation Baer and Brock even conjectured that

k n . The truth of this conjecture is an immediate consequence of ourn

main result un ' ' 2n and the previously unpvblishe" !,heorem due to Burgess

Davis which is proved below.

Theorem (Burgess Davis).
n. u

n n

Proof. First suppose Xi, 1 < i < , are i.i.d. uniform on [0,1].

For any c > 0 and 0 < 6 < 1, let I (n) denote the intervalk

((k-l)e/r, ke/Af] and let Y (n) denote the cardinality of the set
k

i: I < i < n, X1 EI(n)}. Consider the events

A m ain (n) > (1-6)cvVWn 1 < k:<_n/c Yk -

and note that elementary binomial estimates show P(A) I as n + .

25

A .!



Now assign "pretend ranks" as follows:

if X C I(n) and X is one of the first [(1-6) Ec/] elements
i k(n)

of I we chose its "pretend rank" at random from those integers
k

between (k-l)(1-6)e/i and k(l-O)c/ which are not already assigned.

We then ignore all X's i (n) after the first [(1-6)e/j.
i k

We note that on A the sequence of "pretend ranks" is simply an

permutation on the integers {k: 1 < k < (l-6)n}.

Now use the optimal random permutation policy on the set of

"pretend ranks" to select a subsequence with decreasing pretend ranks.

Delete from the subsequence all X 's which are not smaller than all

their predecessors in the subsequence. This gives an decreasing sub-

sequence.

We now claim that the expected cardinality of the resulting

subsequence is at least P(A n)( M-c/n) with m - [(l-6)n]. First

note, on A the expected length before deletions is t . Let J(n)
n m i

denote the interval I(n) which contains the smallest selected element
k

from {XI,X 2,...,X i). For Xi+1 to be an observation deleted from the

(n)selected subsequence it is necessary that X i+l By Boole's
.(n) w aeta h

inequality and the independence of Xi+l and J we have that the
i~l i

expected number of deleted observations is at most

n-1
I P(X £Jl in)) . n(cIn) -a 4

This proves t/I- < P(An)-I u/6 + c . By (7.1) and the arbitrariness

of £ and 6 the theorem is proved.
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